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Abstract: We undertake a systematic analysis of non-geometric backgrounds in string

theory by seeking stringy liftings of a class of gauged supergravity theories. In addition

to conventional flux compactifications and non-geometric T-folds with T-duality transition

functions, we find a new class of non-geometric backgrounds with non-trivial dependence

on the dual coordinates that are conjugate to the string winding number. We argue that

T-duality acts in our class of theories, including those cases without isometries in which

the conventional Buscher rules cannot be applied, and that these generalised T-dualities

can take T-folds or flux compactifications on twisted tori to examples of the new non-

geometric backgrounds. We show that the new class of non-geometric backgrounds and

the generalised T-dualities arise naturally in string field theory, and are readily formulated

in terms of a doubled geometry, related to generalised geometry. At special points in

moduli space, some of the non-geometric constructions become equivalent to asymmetric

orbifolds which are known to provide consistent string backgrounds. We construct the

bosonic sector of the corresponding gauged supergravity theories and show that they have

a universal form in any dimension, and in particular construct the scalar potential. We

apply this to the supersymmetric WZW model, giving the complete non-linear structure

for a class of WZW-model deformations.
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1. Introduction

Superstring theory can be formulated in ‘non-geometric’ backgrounds that cannot be un-

derstood in terms of supergravity and conventional field theory [1 – 9], and these offer an

interesting window onto stringy physics beyond the scope of supergravity. The purpose of

this paper is to systematically analyse the possible structures of non-geometric backgrounds

and seek string-theory constructions of these.

The non-geometric backgrounds that have been studied so far are backgrounds in which

the transition functions are allowed to include duality transformations, and a systematic

study of those with T-duality transition functions was made in [1], where the name T-fold

was proposed. Our considerations will lead us to a new class of backgrounds that are

even more non-geometric than T-folds: whereas T-folds look like conventional spacetimes

locally, with ordinary spacetime patches glued together with transition functions that can

include T-dualities, the new class of backgrounds do not look like conventional spaces even

locally. Nonetheless, we shall present arguments that these non-geometric spaces are good
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string backgrounds and that they necessarily arise in string theory. In some cases, these

new backgrounds are obtained from consistent backgrounds by the action of T-dualities.

However, these are T-dualities in directions in which there are no isometries, so that the

conventional sigma-model duality transformations through the Buscher rules cannot be

applied. We argue that T-duality can nonetheless be applied, with a more general set of

rules.

A classic example is that of a three-torus with constant H-flux, so that the NS-NS

3 form field strength is proportional to the volume form on T 3. Performing one T-

duality gives a T 2 bundle over S1 [10] with monodromy in the group SL(2, Z) of large

diffeomorphisms on T 2. A further T-duality on one of the fibre directions gives a non-

geometric T-fold that is a T 2 bundle over S1, but with monodromy in the T-duality group

O(2, 2; Z) [4, 6, 1], so that this should be thought of as a bundle of CFTs over a circle with

each fibre being a CFT on T 2 and the moduli of these CFTs varying over the S1. A further

T-duality on the S1 base appears impossible as the T-fold geometry depends explicitly on

the circle coordinate. We propose a construction of the missing T-dual.

This has interesting applications to mirror symmetry on Calabi-Yau manifolds with

flux. Consider a CY with T 3 fibration with H-flux on the fibres. If the argument of [11]

generalises to the case with flux, then one expects the mirror background in the large

volume limit to be obtained by acting with T-dualities on all fibre directions. In this case,

the T-dual must be a non-geometric background of the type we propose here.

We show that the new non-geometric backgrounds and the generalised T-dualities arise

naturally in string field theory, and indeed generic solutions of string field theory will be

non-geometric backgrounds of this type. We also show that in some cases the new exotic

backgrounds have a point in moduli space that minimises a scalar potential and at which

the theory can be constructed by a special type of asymmetric orbifold, so that our new

constructions can be thought of as giving deformations of asymmetric orbifolds.

The new backgrounds arise naturally in the doubled formalism used in [1]. Strings on a

torus T n can be formulated on a doubled torus T̄ 2n with n coordinates Xi conjugate to the

momenta and n coordinates X̃i conjugate to the winding modes. Geometric backgrounds

and T-folds can have non-trivial dependence on the space coordinates Xi in the usual way,

while our new backgrounds have non-trivial dependence on X̃ also. For example, a T n

bundle over Tm gives a geometric background, a T̄ 2n bundle over Tm gives a T-fold while

bundles of the doubled torus T̄ 2n over the doubled base T̄ 2m give examples of our new

class of non-geometric backgrounds. Indeed, the T-dual of the T 3 with H-flux is a bundle

of this kind with n = 2,m = 1.

Our approach here is to investigate the lifting of a certain class of D-dimensional

gauged supergravities to 10 dimensions. In some cases they arise from supergravity com-

pactifications, but for others there is no such geometric origin. Some arise from intrinsically

stringy constructions such as asymmetric orbifolds, reductions with duality twists or T-fold

reductions. In general, the lifting is non-geometric in the sense that there is no supergrav-

ity compactification that gives rise to them. For example, compactification on a manifold

with an isometry group K gives a theory in which the vector fields from the reduction of

the metric are gauge fields for a Yang-Mills group K, but the gauge fields arising from the
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reduction of antisymmetric tensor gauge fields typically have abelian self-interactions, so

that the gauge group for the reduction of a theory with gravity plus anti-symmetric tensors

is a product or semi-direct product of K with an abelian group. There are gauged super-

gravities in which the D-dimensional gauge fields that are associated with antisymmetric

tensor gauge fields become non-abelian in D dimensions, but such non-abelian interactions

cannot arise from a conventional compactification. Roughly speaking, the curving of the

internal geometry leading to an isometry group gives a non-abelian structure to the momen-

tum modes, and what would be needed is the dual version of this that gives a non-abelian

structure to string winding modes or brane wrapping modes, and this is clearly beyond the

scope of supergravity. The non-geometric background we find gives the required ‘curving’

of the dimensions conjugate to the string winding modes

An important question is whether all effective supergravity theories have a stringy

lifting. We find classical stringy liftings for a wide class of ‘unliftable’ supergravities and

we have found no obstructions to finding such lifitings generally. However, in this paper

we consider only classical string theory, and at the quantum level modular invariance is

expected to restrict the possible non-geometric backgrounds, just as it does for asymmet-

ric orbifolds. However, those that arise as T-duals of consistent backgrounds should be

quantum consistent.

We focus here on the sector associated with the metric, B-field and dilaton, and on the

action of T-duality, as we are interested here in explicit string theory constructions, but

this can be generalised to include U-duality and RR or heterotic sectors. The dimensional

reduction of this sector on a d-torus and truncation to a particular finite subset of fields

gives a theory with an O(d, d) symmetry, 2d vector fields and d2 + 1 scalars. The gauged

theories we consider are ones in which a 2d-dimensional subgroup of O(d, d) is promoted

to a local symmetry with the spin one fields becoming the gauge fields. We argue that the

general gauged supergravities must be of the same form as the ones found by Kaloper and

Myers [12] for Scherk-Schwarz reductions with flux, generalised to a wider class of gauge

groups than considered there. In particular, we find the form of the scalar potential for

the d2 + 1 scalars.

The effective D-dimensional supergravity theories that we consider give important

information about the structure of the 10-dimensional liftings, when they exist, and provide

a way of parameterising the possible backgrounds that might emerge. In general, these

arise from a (possibly non-geometric) compactification followed by a truncation. There is

a natural action of O(d, d) on the effective supergravity, which takes it to an apparently

different but physically equivalent D-dimensional theory. However, these transformations

can have radical effects on the 10-dimensional liftings, for example taking one from a

geometric compactification in which the non-abelian gauge fields arise from isometries to a

non-geometric one in which the non-abelian vector fields come from the B-fields coupling to

winding modes. This gives an indication as to how T-duality must act in the uplifted theory.

The scalar potential also gives important information about the structure of the theories.

Of particular interest are critical points of the scalar potential with zero energy, as they

correspond to reductions to D-dimensional Minkowski space. An important class of these

arise from asymmetric orbifold constructions, so that the non-geometric deformations away
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from the orbifold point in moduli space that we propose correspond to moving away from

the minimum of the potential, and there will in general no longer be a solution involving

D-dimensional Minkowski space. In these cases, the solution of the D-dimensional effective

theory which has maximal symmetry is typically a solution of domain-wall type with D−1

dimensional Poincaré symmetry.

The plan of this paper is as follows. In section 2 we review the low energy effective

action for toroidal compactifications of string theory and consider the most general gaug-

ings. Scherk-Schwarz reductions and duality-twisted reductions are special cases of these.

Based on the known formula for the effective potential that arises in this case, we propose

an effective potential for the most general gauging based on the duality covariance of the

formula and discuss some properties of the general gauge algebra in section 3. We review

and discuss Scherk-Schwarz reductions and duality-twisted reductions in sections 4 and 5

respectively. In section 6, we apply our formalism to WZW models and argue that the

potential proposed in section 2 correctly captures the non-linear structure for a class of

WZW-model deformations. In particular, the potential gives the correct symmetry break-

ing pattern after including an infinite number of higher order terms in the effective potential

for the Higgs field that breaks the gauge symmetry. In section 7 we show that some of

the models obtained by lifting gaugings are related by duality to known Scherk-Schwarz

and duality-twisted reductions, and investigate in detail the special cases in which these

reduce to asymmetric orbifold constructions which can be dualised explicitly. In section 8

we examine the new non-geometric constructions implied by the generalised T-duality. In

section 9 we argue that the generalised T-duality can be implemented within string field

theory and that general string field theory solutions will include non-geometric backgrounds

of the type we discuss here. We conclude with a discussion in section 10.

While this paper was in preparation, the paper [8] appeared in which the relation

between low-energy effective actions in four dimensions and non-geometric backgrounds

were also explored. They also identified classes of gaugings that might lead to new non-

geometric backgrounds, but no constructions of such backgrounds were provided.

2. The low-energy effective action and gauged supergravity

The low-energy effective field theory for n-dimensional string theory includes the terms

S =

∫

dnx
√
−Ge−Φ

{

R + (∇Φ)2 − 1

12
HµνλHµνλ

}

(2.1)

for a scalar field Φ, metric Gµν and 2-form gauge field B with field strength H = dB. Our

conventions are as in [12], and our notation largely follows that of [12]. This action can

arise as part of the low-energy effective action of the bosonic string with n = 26 or of the

‘common sector’ of the heterotic or type II superstrings in n = 10 dimensions. The 10-

dimensional supergravity theories describing the low-energy limit of the heterotic or type

II string theories can be decomposed into D = 10, N = 1 multiplets. In all cases, there

is a common sector consisting of the N = 1 supergravity multiplet whose bosonic fields

consist of the metric, the 2-form gauge field B and the dilaton, with action (2.1). For the
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heterotic or type I strings, there are in addition Yang-Mills multiplets, while for the type II

strings one adds a gravitino multiplet whose highest spin state is a gravitino, and there are

two possibilities depending on whether this has the same or the opposite chirality to the

gravitino in the supergravity multiplet. We will discuss in this paper the reduction of the

sector of the low-energy theory represented by the action (2.1), corresponding to the N = 1

supergravity sector of the theory, obtaining a gauged supergravity with 16 supersymmetries

that is a truncation of the gauged supergravity arising from the full theory. The reduction

of the full heterotic theory is discussed in [12], while that of the type II theory will be

discussed in [13]. In particular, the scalar potential we obtain will be restricted to the

scalars coming from the reduction of the common sector. However, in the full theory there

are other scalars coming from the RR fields in the type II string and from the Yang-Mills

gauge fields in the heterotic string, and the full potential depends on these also. The gauge

symmetry of the full theory will contain the gauge algebra that we discuss in section 3, but

will be larger in general. The generalisation to M-theory will be discussed in [13].

The standard Kaluza-Klein dimensional reduction of (2.1) on a d-torus gives a theory

in D = n − d dimensions with an O(d, d) invariance and action [14, 12]

S =

∫

dDx
√−ge−φ

{

R + (∇φ)2 − 1

12
H2

µνλ

+
1

8
Lab∇µKbcLcd∇µKda − 1

4
F a

µνLabKbcLcdF
d µν

}

. (2.2)

The d Kaluza-Klein vector fields V M
µ (M,N = 1, . . . , d) from the reduction of the metric

and the d vector fields BµM from the reduction of B have been combined into the 2d vector

fields Aa
µ (a, b = 1, . . . , 2d) with abelian field strengths F a = dAa

Aa
µ =

(

V M
µ

BµM

)

. (2.3)

These vector fields transform as the fundamental representation of O(d, d), Aa → A′a =

Ma
bA

b. The O(d, d) invariant metric is

Lab =

(

0 1

1 0

)

(2.4)

where 1 is the d × d unit matrix, and satisfies M LMT = L, where the superscript T

indicates matrix transposition. The scalar fields take values in the coset O(d, d)/O(d)×O(d)

and are represented by a symmetric 2d × 2d matrix Kab with trace LabKab = 0 and which

transforms under O(d, d) as Kab → K′ab = Ma
cM

b
dKcd. The reduced three-form field

strength is

Hµνλ = ∂µBνλ − 1

2
Aa

µ Lab F b
νλ + cyclic permutations (2.5)

and includes abelian Chern-Simons terms [17]. The theory has U(1)2d gauge symmetry

and a manifest global O(d, d) symmetry.
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We will be interested in gauged supergravities that arise as deformations of this theory.

As we shall review in section 4, a class of these arise from dimensional reduction on twisted

tori with flux. In the class of gauged supergravities that we shall consider here, a 2d-

dimensional subgroup G of O(d, d) is promoted to a local symmetry, with the gauge fields

Aa appearing in the minimal couplings. For this to be possible, it is essential that the

fundamental representation of O(d, d) becomes the adjoint of G under the embedding of G

in O(d, d), so that the gauge fields Aa transform in the adjoint of the gauge group. If the

generators of O(d, d) are denoted by tab = −tba, then the subgroup G generators Ta are

specified by an embedding tensor Θa
bc so that

Ta =
1

2
Θa

bctbc (2.6)

and satisfy

[Ta, Tb] = ifab
cTc (2.7)

where fab
c are the structure constants of G.

The deformation of (2.2) with gauge symmetry G is

S =

∫

dDx
√−ge−φ

{

R + (∇φ)2 +
1

8
LabDµKbcLcdDµKda

− 1

4
F a

µνLabKbcLcdF
dµν − 1

12
H2

µνλ − g2W (K)
}

(2.8)

where W (K) is a gauge-invariant scalar potential, the covariant derivative of the scalar

fields is

DµKab = ∂µKab − gfcd
aAc

µKdb − gfcd
bAc

µKad . (2.9)

the field strengths for the gauge fields A taking values in the Lie algebra of G are

F = dA + igA ∧ A =
1

2
F a

µνTadxµ ∧ dxν (2.10)

and the three-form field strength is

H = dB − 1

2
ωCS (2.11)

where the Chern-Simons term for G is

ωCS = tr

(

A ∧ F − g
i

3
A ∧ A ∧ A

)

. (2.12)

Here g is the gauge coupling constant, which will be set to g = 1 in later sections. In the

supersymmetric case, this is the bosonic sector of a gauged supergravity action in which

the fermionic terms are modified by fermion mass terms proportional to g.

All the terms in the action (2.8) are completely determined by gauge invariance and

requiring the ungauged limit to give (2.2), apart from the scalar potential, which in principle

could be any G-invariant function of the scalars in the bosonic string theory. However, for

the superstring, the theory resulting from the reduction of the supergravity action whose

bosonic part contains (2.8) is a gauged supergravity in D dimensions and supersymmetry
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leads to further restrictions. Supersymmetry in general rules out some of the possible gauge

groups, and determines the form of the scalar potential. The minimal couplings for the class

of the theories considered here only depend on the embedding tensor through the structure

constants fab
c, and on general grounds the supersymmetric scalar potential must be O(d, d)

covariant and must be constructed from the structure constants fab
c, the scalar matrix Kab

and the O(d, d) metric Lab. Moreover, it must be quadratic in the structure constants and

of order g2 and so the general form must be (using the notation fabc = fab
dLcd, which is

automatically antisymmetric fabc = f[abc])

Wgen(K) = aKadKbeKcffabcfdef + bKadKbeLcffabcfdef + cKadLbeLcffabcfdef + d (2.13)

for some constants a, b, c, d, and it must take this form with the same constants a, b, c, d

for all possible gaugings.

In the generalised Scherk-Schwarz reductions with flux to be discussed in section 4,

the scalar potential is given by W (K) = WSS(K) [12, 15] where

WSS(K) =
1

12
KadKbeKcffabcfdef − 1

4
KadLbeLcffabcfdef . (2.14)

This must agree with the general potential, and is sufficiently general to fix the coefficients

a, b, c, d, and so the potential must be W (K) = WSS(K) given by (2.14) for all supersym-

metric gaugings. Our discussion of explicit string compactifications and their low-energy

limits will provide non-trivial checks of this conclusion. Note that in general there could

be quantum corrections to this potential.

The ungauged action is manifestly invariant under O(d, d) transformations, while the

couplings of the gauged action (2.8) break this to the subgroup preserving the structure

constants fab
c. However, it becomes invariant if the structure constants are also taken to

transform

fab
c → Ma

dMb
eM c

ffde
f (2.15)

so that the embedding also changes.

3. The gauge algebra and duality

As we shall review in the next section, generalised Scherk-Schwarz reduction is specified by

two constant tensors, the structure constants γM
NP of a Lie group K specifying the ‘twisting’

of the basis one-forms ηM in (4.1), and the constraints βMNP specifying a 3-form flux

1

2
βMNP ηM ∧ ηN ∧ ηP (3.1)

for the 3-form field strength H.

As we have seen, the 2d gauge fields Aa consist of d gauge fields V M arising from

the reduction of the metric and d gauge fields BM from the reduction of the B-field. The

gauge generators Ta decompose into the generators ZM corresponding to V M and XM

corresponding to BM . The internal space has isometry group K, and in the absence of flux

the gauge group is a semi-direct product of the group containing K generated by ZM and
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an abelian group generated by the XM . With flux, this is deformed to [12, 15]

[XM ,XN ] = 0

[XM , ZN ] = 2iγM
NP XP

[ZM , ZN ] = 2iγP
MNZP − 3iβMNP XP (3.2)

and the low-energy effective action is given by (2.8) and (2.14) based on this algebra. The

Jacobi identities require that γM
NP are the structure constants of a Lie algebra K and that

3βL[MNγL
PQ] = 0 . (3.3)

The most general gauge algebra will have a decomposition

[XM ,XN ] = 2iγ̃MN
P XP + 3iβ̃MNP ZP

[XM , ZN ] = 2iγ̂M
NP XP + 2iγ̄MP

N ZP

[ZM , ZN ] = 2iγP
MNZP − 3iβMNP XP (3.4)

and is specified by a set of tensors γ, β, γ̃ . . . , subject to the constraints arising from the

Jacobi identities.

These then constitute the general set of parameters specifying the low-energy field

theory generalising the twist γ and flux β of the usual reduction. We will refer to γ̃ as

the dual twist and β̃ as the dual flux. Our aim here is to find string constructions in

which some of these new parameters γ̃, γ̂, γ̄, β̃ are non-trivial. In some cases, these arise

from non-geometric backgrounds, but as we shall see in section 6, they can also arise from

geometric compactifications that are not of Scherk-Schwarz type.

As we saw in the last section, there is a natural action of O(d, d) under which the

structure constants fab
c transform covariantly. These transformations mix the twist γ

and flux β with each other and with the new parameters γ̃, γ̂, γ̄, β̃ in general. This gives

a natural conjecture for the action of the T-duality group O(d, d; Z) in the full string

theory [15], namely that the structure constants transform as (2.15). This reproduces the

known cases in which T-duality acts through the Buscher rules [19] and interchange twist

and flux (e.g. acting on a 3-torus with constant H-flux β and γ = 0 with a T-duality on

one circle gives a torus bundle over a circle with twist γ but no flux, so that β = 0 [10]).

Moreover, this predicts how to extend this to non-geometric backgrounds.

4. Scherk-Schwarz reductions with flux

In this section we review the results of [16, 12, 15] for the general Scherk-Schwarz reduction

with flux of the theory with action (2.1) to D dimensions. The internal manifold is taken

to be a space with a basis of one-forms ηM satisfying

dηM = −γM
NP ηN ∧ ηP (4.1)

with constant coefficients γM
NP , so that the integrability condition for (4.1) is that the γM

NP

satisfy the Jacobi identity

γM
R[N γR

PQ] = 0 (4.2)
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and so are the structure constants of the Lie algebra for some group K. Note that K

can be non-compact or non-semi-simple. The Scherk-Schwarz reduction ansatz for tensor

fields is that they have components with respect to the η-frame that are independent of

the internal coordinates y, so that the internal metric is

ds2 = GMNηMηN (4.3)

where GMN is independent of the internal coordinates y. The GMN are moduli for the

internal metric and in the full ansatz can depend on the remaining coordinates xµ, giving

rise to scalar fields GMN (x). Similarly, the internal B-field could be taken to be B =
1
2BMNηM ∧ ηN . This can be generalised to include a flux 1

2βMNP ηM ∧ ηN ∧ ηP for some

constants βMNP . This will be a closed 3-form if

βL[MNγL
PQ] = 0 . (4.4)

Then locally there is a 2-form ω so that

dω =
1

2
βMNP ηM ∧ ηN ∧ ηP (4.5)

and the full ansatz for the 2-form can be written as

B =
1

2
BMNηM ∧ ηN + ω . (4.6)

Thus the construction is specified by constants γM
NP , βMNP satisfying (4.2), (4.4) and has

internal moduli GMN ,BMN giving d2 scalar fields in the compactified theory, in addition

to the dilaton, just as for the torus case (the constants γM
NP , βMNP do not give further

moduli). This is sufficient to ensure that the reduced field equations have no dependence

on the internal coordinates, but reduction of the action requires that the volume element

can also be reduced to give an action that is independent of the internal coordinates, and

this requires the further condition

γN
NM = 0 . (4.7)

The construction is very similar to a toroidal compactification, but with the coordinate

frame dyM replaced by the ηM frame, which is ‘twisted’ by the constants γM
NP to give what

is sometimes referred to as a ‘twisted torus’ associated with the d-dimensional group K.

For reduction on an internal space with metric and B-field given by (4.3) and (4.6), Scherk

and Schwarz gave an ansatz that allows the truncation of the n-dimensional field theory to

a (D = n− d)-dimensional one that is independent of the internal coordinates y. However,

for this to be a compactification, one needs an internal space that is compact with the local

structure (4.1). If the isometry group K is compact, we can take the internal manifold

to be the group manifold K with isometry group KL × KR with the ηM the left-invariant

Maurer-Cartan one-forms. In general, the internal space must be the quotient K/Γ of the

group manifold by a discrete subgroup of Γ of KL, the left action of K on itself [15]. If K

is non-compact, it is necessary to choose Γ so that K/Γ is compact in order for the Scherk-

Schwarz reduction and truncation of a field theory to be extendable to a compactification

of string theory. A necessary condition [15] for the existence of such a Γ is (4.7). We will

assume (4.7) here.
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The ansatz for the reduction is the most general one that is invariant under the left

action KL. For supergravity, the reduction can be viewed as reduction on the group

manifold followed by truncation to the KL singlet sector, and the isometry of the internal

space KR gives rise to a gauge group K [15]. For the full string theory, we wish to consider

the full theory without truncation, so we require a compact internal space. For K non-

compact, we consider reduction on compact spaces K/Γ where Γ is a discrete subgroup of

KL. The left-invariant one-forms η on K then give well-defined one-forms on K/Γ.

Let xµ be D-dimensional space-time coordinates and yM be coordinates on the d-

dimensional internal space. It is useful to define

νM = ηM (y) + V M
µ(x)dxµ (4.8)

where V M
µ(x) are the d Kaluza-Klein vector fields which are gauge fields for the isometry

group K, with field strength dV M + γM
NP V N ∧V P . The full ansatz for the reduction of the

metric is [16]

ds2 = gµν(x)dxµdxν + GMN (x)νMνN (4.9)

where the metric GMN (x) gives d(d + 1)/2 scalar fields. The ansatz for the 2-form gauge

field is

B =
1

2
Bµνdxµ ∧ dxν ∧ +BµMdxµ ∧ νM +

1

2
BMNνM ∧ νN + ω (4.10)

with 3-form field strength H = dB.

The reduced theory has 2d gauge fields Aa
µ = (V M

µ, BµM ). The V M
µ are gauge fields

corresponding to the isometry group KR of K, and in the standard case in which there

is no flux (β = 0) the corresponding generators of gauge transformations ZM satisfy the

K commutation relations [ZM , ZN ] = 2iγP
MNZP . There are a further d gauge symmetries

for which BµM are the gauge fields, with generators XM . The full reduced theory has

a 2d-dimensional gauge group G generated by the ZM ,XM . The algebra was calculated

in [12] and found to be

[XM ,XN ] = 0

[XM , ZN ] = 2iγM
NP XP

[ZM , ZN ] = −3iβMNP XP + 2iγP
MNZP (4.11)

so that the flux modifies the algebra. The Jacobi identities are satisfied as a result of (4.2)

and (4.4). If K is semi-simple and the flux is given by the structure constants, then the

term involving the flux βMNP can be removed by redefinitions [18], but in general this is

not possible [15].

Introducing the generators Ta = (ZM ,XM ) of G, the algebra can be written as

[Ta, Tb] = ifab
cTc (4.12)

where

fM
NP = fNP

M = 2γM
NP fMNP = −3βMNP (4.13)

The gauge group G is a subgroup of the O(d, d) that was a symmetry of the toroidally

reduced theory. The reduced action is (2.8).
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5. Reductions with duality twists

There is a second type of dimensional reduction which is also often called a Scherk-Schwarz

reduction. If a theory in D + 1 dimensions has a global symmetry K, then reducing on a

further circle to D dimensions, one can allow a twist around that circle by an element of

K. We refer to these as reductions with duality twists [2], and will show that while a large

class of these are Scherk-Schwarz reductions of the type considered in the previous section,

this is not true in general, and the twisted reductions which are not of Scherk-Schwarz

type will play an important role. We will be interested here in the case in which a string

theory is reduced first on a d − 1 torus to give a theory in D + 1 dimensions with global

symmetry O(d−1, d−1; Z) and reducing on a further circle with an O(d−1, d−1; Z) twist.

The low-energy field theory in D + 1 dimensions in fact has an O(d − 1, d − 1) continuous

symmetry and in the field theory one could twist with an element of O(d− 1, d− 1), while

in the full string theory there is an action of O(d − 1, d − 1) on the theory, but only the

discrete subgroup O(d − 1, d − 1; Z) is a symmetry and the twist must be in this discrete

subgroup. This is the typical situation in the examples arising in string theory; there is an

action of a continuous group K of which a discrete subgroup K(Z) is a symmetry, and the

ansatz uses the action of K but the twist is required to be in K(Z) [10].

Suppose an element g of a continuous group K in D + 1 dimensions acts on a generic

field ψ as ψ → g[ψ]. For our string theory case, K = O(d − 1, d − 1). Consider now the

twisted dimensional reduction of the theory to D dimensions on a circle of radius R with a

periodic coordinate y ∼ y+2πR. In the twisted reduction, the fields are not independent of

the internal coordinate but are chosen to have a specific dependence on the circle coordinate

y through the ansatz

ψ(xµ, y) = g(y) [ψ(xµ)] (5.1)

for some y-dependent group element g(y) ∈ K. An important restriction on g(y) is that the

reduced theory in D dimensions should be independent of y. This is achieved by choosing

g(y) = exp

(

My

2πR

)

(5.2)

for some Lie-algebra element M . The map g(y) is not periodic around the circle in general,

but has a monodromy

M(g) = exp M. (5.3)

In the string theory, the monodromy has to be an element of G(Z) = O(d−1, d−1)(Z) [10].

The reduction for string theory with an O(d − 1, d − 1; Z) twist is straightforward

and gives a D dimensional theory with effective action (2.8) and a non-semi-simple gauge

group G. The coordinates yM split into the coordinates ym on the (d − 1)-torus with

m = 1, . . . , d − 1 and the coordinate y on the final circle, yM = (y, ym), so that the

gauge field one-forms are V y, V m and By, Bm with corresponding gauge group generators

Zy, Zm,Xy,Xm. It will also be useful to introduce indices α, β = 1, . . . , 2(d − 1) for

the fundamental representation of O(d − 1, d − 1) so that the gauge generators are Ta =

(Zy,X
y , Tα) where Tα = (Zm,Xm). Then the gauge algebra for this reduction is

[Zy, Tα] = Mα
βTβ (5.4)
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with all other commutators vanishing, and from this the structure constants fab
c can be

read off. The scalar potential is [16]

V (Φ) = eaφTr[M2 + M tKMK−1], (5.5)

where eφ is the modulus corresponding to the radius of the final circle and a = 6/(D −
1)(D − 2).

In the basis in which Tα = (Zm,Xm), the mass matrix Mα
β has the decomposition

Mα
β =

(

wm
n umn

vmn − (wt)mn

)

(5.6)

where umn = −unm and vmn = −vnm while wm
n is an unconstrained matrix. The algebra

(2.7) can then be written as

[Zy, Zm] = wm
nZn + umnXn

[Zy,X
m] = −wn

mXm + vmnZn (5.7)

[Zn, Zm] = 0 [Xm,Xn] = 0 .

This is of the same form as (3.4) only if vmn = 0. Thus the twisted reduction considered

here is more general than the Scherk-Schwarz reduction of the type considered in section 4

whenever vmn is nonzero. Conversely, not all Scherk-Schwarz compactifications can be

viewed as duality-twisted compactifications. (For example, Scherk-Schwarz compactifica-

tion on a non-abelian semi-simple group manifold H without flux will result in the Zm

generating the Lie algebra of H which is not of the form (5.7) in general.)

Comparing with the general algebra (3.4) in section 3 we see that in this way we

obtain a gauging where γ̃ and β̃ are zero and all other structure constants are nonzero.

The Scherk-Schwarz (twisted torus) reductions have non-zero γ = γ̂, β, but the reduction

with duality twist has a more general algebra in which γ̄ is also non-zero. We show in the

next section how γ̃ and β̃ can arise in the context of non-geometric shifts and asymmetric

orbifolds.

The mass matrix (5.6) is in the Lie algebra of O(d − 1, d − 1). The subalgebra pa-

rameterised by wm
n is GL(d − 1, R) which acts geometrically on the torus T d−1 while

umn parameterises the transformations that shift the B-field on the torus by a constant

2-form. Thus the subalgebra in which vmn = 0 is the one that can be realised geometri-

cally as diffeomorphisms of T d−1 and shifts of the B-field and such twists can be realised

as standard reductions on a manifold which can be viewed either as a T d−1 bundle over

a circle with suitable B-field ansatz, or as a reduction on a discrete identification of the

group manifold for the group G with Lie algebra (5.7). When vmn 6= 0, the T-duality twist

is non-geometrical and it is this non-geometrical case that is not of the Scherk-Schwarz

form of section 4, giving an internal space which is a T-fold [1] rather than a geometrical

background.
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6. WZW models

We now discuss an example where the full nonabelian structure of the gauge group plays

a role. Following the general discussion in section 2, compactification of the action (2.1)

on T3 gives a low energy theory (2.2) with an O(3, 3) rigid symmetry and six vector fields

in the vector representation (3,3) of O(3, 3). We can choose to gauge an SO(3) × SO(3)

subgroup since the vector representation (3,3) of O(3, 3) decomposes into the adjoint

(3,1) + (3,1) of SO(3) × SO(3) ⊂ O(3, 3), to give a gauged theory with action (2.8).

There is a natural candidate for the string-theory lifting of this gauging, which is one

where the internal CFT is the SO(3) WZW model (or a non-conformal deformation of

this that preserves SO(3) × SO(3) global symmetry) as this would give the same gauge

symmetry SO(3) × SO(3). We will now analyse this case in more detail, showing that

the symmetry breaking patterns emerging from the scalar potential are exactly those of

the WZW model, supporting our claim that the WZW model is the correct lifting of this

gauging. It is remarkable that our potential (2.14) then provides a complete non-linear form

for the potential for the WZW model; we will explore this in more detail elsewhere [29].

From the embedding of SO(3) × SO(3) ⊂ O(3, 3), the generators TM and T̃M of the

two SO(3) factors (M = 1, 2, 3) are related to the generators ZM ,XM by

T = Z + X, T̃ = Z − X (6.1)

(with indices raised or lowered with δMN ). Then the gauge algebra takes the form

[XM ,XN ] = 3iεMNP ZP

[XM , ZN ] = 2iεM
NP XP

[ZM , ZN ] = 2iεP
MNZP . (6.2)

Comparing with 3.4, we see that this gives β̃MNP = εMNP , γM
NP = γ̂M

NP = εM
NP . Note that

gauge algebras with nontrivial β̃, γ̂M
NP are in this case arising from a geometric reduction

on the SO(3) group manifold (or S3) with flux.

The scalar fields in the O(3, 3)/O(3) × O(3) coset space can be parameterised by a

matrix ϕαα′

where α = 1, 2, 3 takes values in the adjoint representation of one SO(3) and

α′ = 1, 2, 3 takes values in the adjoint representation of the other SO(3)′. It is easy to see

that the potential (2.14) has a leading term which is cubic in ϕαα′

and takes the form

W (K) = −4 + εαβγεα′β′γ′ϕαα′

ϕββ′

ϕγγ′

+ O(ϕ4) = −4 + det(ϕ) + O(ϕ4) . (6.3)

The full potential is non-polynomial in ϕαα′

. In this leading-order approximation, ϕ can

be thought of as Higgs field that transforms in the bi-adjoint representation of the gauge

symmetry and thus to start with there are nine scalar fields (plus a dilaton). The full

symmetry is restored at ϕ = 0. The potential allows for a single flat direction and the

moduli fields can acquire a nonzero expectation value ϕαα′

= δα3δα′3v. When the vacuum

expectation value v is nonzero, then the symmetry is broken to SO(2) × SO(2). By ex-

panding around this vev, it is easy to see that out of the nine scalar fields, one remains

massless for all values of v corresponding to the flat direction. We will show in [29] that
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this is an exact flat direction of the full non-polynomial potential. There are four would-be

goldstone bosons that are eaten by the four gauge fields which then acquire a mass of order

v. Of the remaining four, two become massive and two become tachyonic.

This symmetry breaking pattern is exactly what one would obtain by compactifying

the bosonic string on a three-dimensional SO(3) group manifold with three-form flux given

by the invariant 3-form so that it corresponds to a WZW model. Compactifying on the

SO(3) WZW model one would obtain SO(3)L × SO(3)R as the spacetime gauge symme-

try. If Ja and J̃a are the currents of SO(3)L and SO(3)R respectively then there is an

exactly marginal operator in the worldsheet conformal field theory
∫

aJ3J̃3 where a is a

real coefficient. As a result, there is precisely one flat direction (up to gauge equivalence).

The moduli space of this compactification is one-dimensional, labelled by this real num-

ber a which we can identify with v above. Moreover, for nonzero a, the addition of this

perturbation breaks the symmetry to SO(2)L × SO(2)R generated by J3 and J̃3.

We are interested here in the large k limit of the WZW model that is nearly classical.

However, the symmetry-breaking pattern does not depend on k, so a quick way to verify

this pattern is to look at the WZW model with k = 1 described by a single boson X

near the self-dual radius. If we compactify the bosonic string on a circle at the self-dual

radius, there is one flat direction for the spacetime potential corresponding to changing

the radius. Giving a nonzero vev to the modulus field corresponds to moving slightly away

from the self-dual radius which breaks the symmetry to SO(2)L × SO(2)R generated by

the worldsheet currents ∂X and ∂̃X. It is easy to see the spectrum of states is exactly the

same as above.

It is thus nontrivial that for the natural generalisation of the Scherk-Schwarz potential

that we have proposed, the quadratic term is absent and the potential correctly captures

the symmetry breaking pattern expected from string theory. Note also that the vacuum

energy g2W at the minimum of the potential does not vanish but instead has a small

negative value that goes as −4g2. This acts as a tadpole for the dilaton and the equations

of motion of the dilaton would not be satisfied unless we adjust the total central charge

to be 26. The gauge coupling constant g2 corresponds to 1/k and hence this correction to

the central charge goes as −1/k. Recall that the central charge of the SO(3) model is 3k
k+2

which for large k goes as 3− 6
k + · · · . The correction − 6

k is the leading α′ correction. It is

interesting that our generalized potential is able to capture this subleading correction even

though we are working in the framework of supergravity.

In superstring theory, we compactify the theory on a super WZW model at level k

which factorizes in terms of three Majorana-Weyl fermions and a bosonic WZW model at

level k − 2. Hence, our analysis above applies without much change. Note that now the

corrections to the central charge is exactly − 6
k and there are no further α′ corrections.

To obtain a supersymmetric, tachyon-free compactification of the Type-II string one

can consider, for example, AdS3 × S3 × K3 that arises as a near-horizon limit of the

NS5-F1-P black hole. The S3 factor is then described by a super WZW model. The

bulk supergravity has a dual description in terms of a boundary sigma model with (4, 4)

superconformal symmetry. In the boundary theory, the SU(2) × SU(2) symmetry of the

bulk appears as the R-symmetry. By turning on various operators in the boundary CFT
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that break the (4, 4) superconformal symmetry to (2, 2) superconformal symmetry one can

reduce the R-symmetry from SU(2) × SU(2) to U(1) × U(1). These will correspond to

interesting renormalisation group flows in the boundary CFT. In the bulk supergravity, the

description of this symmetry breaking pattern far away from the symmetric point would

require the full nonlinear structure of the effective potential above that encapsulates the

higher order interactions.

7. T-folds and asymmetric orbifolds

We have seen that a particular class of gaugings (those with gauge algebra (4.13)) arise

from Scherk-Schwarz reductions with flux, while another class (with gauge algebra (5.4))

arises from reductions with duality twists, but these constitute only a restricted class of

possible gaugings. For the remainder of this paper, we wish to investigate the question of

which other gaugings can have a string theory origin, and we will consider in particular

stringy generalizations of the Scherk-Schwarz reduction and orbifold constructions, which

are closely related. Many of our considerations will apply equally to the bosonic, heterotic

and type II strings. Our initial goal will be to explore the classical structure of such a

generalization using symmetry considerations. We will see that our proposed generalization

encompasses the duality-twisted reductions along with Scherk-Schwarz reductions and thus

includes non-geometric possibilities that are classically consistent. We postpone questions

of quantum consistency such as modular invariance for future investigation.

The starting point is then a choice of gauge group G which is a 2d dimensional subgroup

of O(d, d) with structure constants fab
c such that the fundamental representation of O(d, d)

becomes the adjoint of G under the embedding of G in O(d, d). Then the truncation

to the common sector of the bosonic action in D dimensions is given by (2.8) with the

definitions (2.9), (2.10), (2.12).

By construction, the potential of gauged supergravity (2.14) proposed in section 2 gives

the Scherk-Schwarz potential when the structure constants take the form (3.2). It is also

easy to see that when the structure constants take the form (5.4), the potential reduces to

the potential (5.5) of the duality-twisted compactifications. Note that the duality twists

with nonzero vmn in (5.7) are more general than the Scherk Schwarz type because the

T-duality group O(d, d, Z) contains additional information about winding modes that goes

beyond supergravity. For example, as shown in [2], when the duality twist is a general

element of O(d− 1, d− 1, Z) that is not an element of the geometric of SL(d− 1, Z) of the

torus, the theory at the minimum of the potential is described by an asymmetric orbifold.

Such a stringy twist clearly goes beyond the usual geometry underlying Scherk-Schwarz

reductions.

7.1 T-dual shifts

We now show that the generalization (3.4) for the gauge algebra proposed in section 3 is

realized naturally in the context of general orbifolds. We have seen that one can generate a

class of non-geometric twists from geometric ones by acting with O(d−1, d−1, Z) T-duality
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transformations. To go further and generate more general gauge algebras it is natural to

consider acting with O(d, d, Z) T-duality transformations. In particular, it is natural to

consider T-dualising the circle with coordinate y that carries the monodromy. However,

there is an obvious and immediate obstruction to this: translation in the circle direction is

not an isometry as the ansatz (5.1) introduces explicit y-dependence into the background

so that the moduli of the internal torus are y-dependent. T-duality as normally formulated

requires that translation in the direction in which one dualises to be an isometry. However,

as we shall review below, for elliptic twists there is a point in the moduli space at which

y-translations become an isometry [2] and in this case one can T-dualise. Moreover, we

showed in [2] that at such special points in moduli space, the twisted reduction becomes

equivalent to an orbifold by a Zn symmetry of the torus CFT together with an order n shift

along a spectator circle [2]. As we shall see, the T-dual is again an orbifold, but now by a

symmetry involving a shift in the T-dual circle. In both cases we can consider the effective

compactified supergravity theory and the special points in moduli space correspond to

minima of the scalar potential. In the case considered in [2] with shifts in the original

circle, the potential gives information about deformations away from the special point in

moduli space, and it is natural to conjecture that this applies for the new orbifold with a

T-dual shift as well. This would be remarkable, as it is unclear how to formulate string

theory in such circumstances – the background would be non-geometric and of a kind more

general than the T-folds proposed in [1]. We now proceed to discuss this construction in

more detail.

The relation between duality-twisted reductions and orbifolds was explored in [2]. The

duality twist is said to be of the ‘elliptic’ type if the matrix M in (5.2) is a compact

generator of O(d − 1, d − 1) and is thus conjugate to an element of the compact sub-

group O(d − 1) × O(d − 1). One can show that for an elliptic twist the monodromy M
is always of finite order, say n, so that Mn = 1. This is basically because a discrete

rotation is of finite order. It was shown in [2] that for duality twists which are of the

elliptic type, the theory at the minimum of the potential is given by an orbifold. The

monodromy matrix M generates a Zn subgroup of the discrete duality group. Generically,

the duality group maps one point of the moduli space to another point. However, the

minimum of the potential occurs at a value of the moduli which is left fixed by this Zn

group. At this point, then, the Zn that leaves it invariant is a proper symmetry of the

theory at that point. One can therefore construct an orbifold utilizing this Zn symme-

try. The orbifold action in this case works as follows. Consider an n-fold cover of the

circle and let the coordinate on this larger circle be Y (so that effectively Y = ny) with

periodicity 2πR0 with R0 = nR. Now, consider an orbifold action that combines the or-

der n twist generated by M with an order n shift along this larger circle, i.e. a shift

by

Y → Y + 2πR0/n. (7.1)

In the the theory over the larger circle, all fields are periodic going around the coordinate

Y . The orbifolding results in a nontrivial bundle going around the original circle coordinate

y with monodromy M.
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One obvious way to generalise this structure is then to T-dualise along the circle

direction. T-duality takes the circle with radius R0 and coordinate Y to a dual circle with

radius R̃0 = 1/R0 and coordinate Ỹ ∼ Ỹ + 2πR̃0. The Zn orbifold in the dual description

is then generated by an element α corresponding to the same duality twist as before but

now accompanied by an order n shift in the T-dual circle coordinate Ỹ

Ỹ → Ỹ + 2πR̃0/n. (7.2)

Given the T-duality symmetry of the underlying string theory, one can always carry out

the T-duality along the Y circle in the orbifold conformal field theory. Moreover, modular

invariance of the original orbifold ensure the modular invariance of the T-dual orbifold.

To understand the meaning of the shift along Ỹ more concretely, recall that after

compactifying along the circle in the Y direction, the momenta and winding along this

circle take values in a lattice Γ1,1. A basis for the string Hilbert space includes the states

|m,w〉 that carry m units of quantized momentum and wrap w times along Y . Now, an

order n shift along Y acts on these states as

|m,w〉 → exp (2πim/n)|m,w〉. (7.3)

Under T-duality, the quantum numbers (m,w) are related to the corresponding (m̃, w̃)

quantum numbers in the dual theory by m = w̃ and w = m̃. Hence, an order n shift along

the T-dual Ỹ coordinate acts on these states as

|m̃, w̃〉 → exp (2πiw̃/n)|m̃, w̃〉. (7.4)

This defines the Ỹ shift in the CFT.

A simple nontrivial supersymmetric example of such an orbifold is the following. Con-

sider Type-II string theory on T4 × S1. One can consider a Z2 orbifold action that acts

as an inversion on all coordinates of the T4 accompanied by an order two shift along the

circle. Without the shift, one would obtain Type-II string on (the T4/Z2 × S1 orbifold

limit of) K3×S1. However, with the shift, the twisted states are massive and one will get

a theory with the same number of supersymmetries as the K3 × S1 compactification but

different massless spectrum. Note that the order two shift could be either be of type (7.3)

or (7.4) with n = 2, depending on whether one is shifting along the Y circle or along the

the dual Ỹ circle. In both cases, the resulting orbifold is modular invariant and quantum

consistent.

Note, however that the orbifold CFT exists only at the minimum of the potential and

not away from it. At the minimum of the potential, the moduli fields are at the fixed point

of the discrete symmetry. As a result, one can show that with the ansatz (5.1), the moduli

fields are independent of the coordinate Y or y. One way to understand this fact is to note

that the Scherk-Schwarz potential arises essentially from the gradient energy of the fields

with the ansatz (5.1). At the minimum, there is no gradient energy, which means that the

fields are independent of y. In this case we have then translation invariance along y, which

allows us to apply the usual T-duality rules.
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When we move away from the minimum of the potential, the moduli of the theory are

no longer at the fixed point of the discrete symmetry generated by M. In this case, there is

a nontrivial dependence on the coordinate y for the fields given by the ansatz (5.1). Now,

without translation invariance along y, we can no longer use the naive T-duality rules.

Thus, even though the theories at the minimum are related to each other by T-duality one

would expect that the theories away from the minimum are not directly related by a simple

T-duality but in a certain sense exchange the dependence on momentum modes with the

dependence on winding modes.

7.2 Asymmetric twists and shifts

The next level of generalization would be to allow for a shift in both Y, Ỹ directions and in

this way obtain a gauge algebra in (3.4) where all γ, β, γ̃, and β̃ are non-vanishing. The

gauge algebra in this case would be

[Zy, Tα] = Mα
βTβ (7.5)

and

[Xy, Tα] = M̃α
βTβ . (7.6)

with

[M,M̃ ] = 0 . (7.7)

If M and M̃ are distinct but mutually commuting and generate subgroups of order n and

m respectively then the theory at the minimum would be described by an Zn×Zm orbifold.

The orbifold action is generated by an element α corresponding to an M twist accompanied

by an order n shift along the y circle and β corresponding to an M̃ shift accompanied by

a order m shift along Ỹ . Note that even though that the theory at the minimum of the

potential will be described by a regular asymmetric orbifold, in the theory away from the

minimum, the fields would have unusual non-geometric dependence on both winding and

momentum modes.

Asymmetric orbifolds are severely constrained by modular invariance and generically

an asymmetric twist and a shift would not lead to a modular invariant theory [20]. Our

analysis here is entirely classical and the quantum consistency of the theory is not guaran-

teed at this level, so that quantum consistency will lead to extra constraints. However, any

background that is T-dual to a consistent background will be consistent. Moreover, there

do exist several nontrivial examples of orbifolds with asymmetric twists and shifts that are

quantum consistent and which cannot be obtained as a T-dual of a symmetric orbifold.

See, for example, [21]. Thus, the general algebra (3.4) that we have used as the basis of

our formalism of gauged supergravity can certainly be realized within string theory at the

minimum of the potential.

8. Generalised T-duality and new non-geometric constructions

For reductions with duality twists, conventional T-duality cannot be applied to the circle

on which the theory is twisted. In this section, we generalise the standard T-duality to

obtain T-duals of configurations that have no conventional T-dual, obtaining new classes
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of non-geometric backgrounds. We will argue that these must be good string backgrounds.

In this section, we will use the picture [1] in which taking a T-dual corresponds to change

of choice of polarisation in a doubled formalism. We will then show in section 9 how this

emerges naturally from string field theory.

Consider a reduction with duality twist, with a reduction on T d−1 followed by reduction

on a circle with an O(d − 1, d − 1; Z) T-duality twist. The dependence on the coordinate

y of the final circle is through the O(d − 1, d − 1) group element

g(y) = exp

(

My

2πR

)

(8.1)

with monodromy

M(g) = exp M (8.2)

in O(d− 1, d − 1; Z). Taking the T-dual on one of the circles in T d−1 is straightforward as

there is no dependence on the coordinates of T d−1. For example, for geometric twists with

monodromy in SL(d − 1, Z), the reduction is equivalent to reduction on a d-dimensional

compact space which is a T d−1 bundle over S1 [10]. The translations in the fibre directions

are isometries and so T-duality along a fibre direction can be done according to the standard

Buscher rules. In some cases this gives another geometric reduction, while in others it gives

a T-fold [1]. However, T-duality along the y-direction is problematic, as the background

depends explicitly on y. In the geometric reduction, the torus bundle has no isometry in

the y direction so that the Buscher rules cannot be applied.

However, there is evidence that it should be possible to take a T-dual in the y direc-

tion. Firstly, the circle has both momentum and winding degrees of freedom, although the

momentum py is not constant along the circle and depends on y. Nonetheless one might

expect an equivalent formulation with momentum and winding interchanged, now with the

‘winding charge’ depending on the circle coordinate. As we shall see, a natural way this

might be achieved is by a simple rewriting with y exchanged with its dual coordinate ỹ.

Secondly, for elliptic twists, there are points in moduli space in which the reduction

becomes independent of y, and becomes equivalent to an orbifold with a shift in the y-

direction. This can then be dualised to give an orbifold with a dual shift in the ỹ direction.

Before dualising, we know that there is no obstruction to moving away from the special

orbifold point in moduli space, but there is an energy cost, as the moduli become scalar

fields of the dimensionally reduced theory, and moving way from the orbifold point involves

moving away from the minimum of the scalar potential. However, the T-dual orbifold is the

same conformal field theory, but written in different variables. This means that it must be

possible to move away from the orbifold point in moduli space in the T-dual theory also.

Moreover, this deformation is readily understood in the dimensionally reduced effective

field theory. We have reviewed how the T-duality acts on the effective field theory in D

dimensions, giving a new effective potential. However, the T-duality can be viewed as a

change of variables to a T-dual set of fields, so that the new potential can be thought of

as being the old one written in the new variables. Moving away from the minimum of the

potential is clearly possible in the reduced theory, again at the cost of increase in potential

energy.
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Our potential (5.5) allows us to go away from the minimum in the low-energy effective

theory and gives a way of thinking about the off-shell duality. The key question is whether

one can lift this to the full theory, allowing a deformation to a new kind of non-geometric

background. One would expect that the T-dual of an orbifold with Y -shift (recall that

Y = ny is the coordinate on the n-fold cover of the circle), which is an orbifold with a

shift along Ỹ , is a minimum of a potential which is obtained by gauging the algebra that is

T-dual to the algebra that was gauged to obtain (5.5). Under T-duality in the y direction,

the element Zy is conjugated to the element Xy, Xy = TZyT
−1. Thus, in the T-dual

description when we are shifting along Ỹ direction, the gauge algebra for this reduction is

expected to be

[Xy , Tα] = M̃α
βTβ (8.3)

with all other commutators vanishing. This is obtained simply by acting on the alge-

bra (5.4) by the T-duality transformation along the y direction. In this case, starting with

a situation with non-vanishing γ and β but vanishing γ̃ and β̃ in our general gauge alge-

bra (3.4), one would obtain a gauge algebra with non-vanishing γ̃ and β̃ but vanishing γ

and β.

If moving away from the special point in moduli space for the orbifold with y-shift

gives a twisted reduction with a twist in the y direction, the natural guess is that doing

the same for the orbifold with dual ỹ-shift should give a twisted reduction with a twist in

the ỹ direction. That is, in reducing on the circle, dependence on the dual coordinate ỹ is

introduced through the twist

g(ỹ) = exp

(

Mỹ

2πR̃

)

(8.4)

so that the reduction is of the same form as before, but with y and ỹ interchanged. This

appears rather trivial from the conformal field theory viewpoint, but the change to a

background with dependence on the dual coordinate takes us away from the realm in

which there is a local spacetime description.

It is useful to consider these constructions from the point of view of conformal field

theory. A state in the conformal field theory on the circle is characterised by momentum

n/R and winding number w for integers n,w and is represented by the tensor product of

a state

|n,w〉 (8.5)

with a state in the oscillator Fock space. One can instead perform a Fourier transform and

represent a state in a position basis with two periodic coordinates y, ỹ of periods 2πR and

2πR̃ = 2π/R respectively

|y, ỹ〉 =
∑

n,w

einy/Reiwỹ/R̃|n,w〉 (8.6)

T-duality interchanges n with w or y with ỹ. In the conformal field theory, n and w or y

and ỹ are on an equal footing, and can be viewed as living on the doubled space, the 2-

torus with coordinates y and ỹ. To make contact with the conventional spacetime picture,

one must choose a polarisation; one picks one of the two coordinates to be the spacetime

coordinate appearing in the sigma-model action, and the other to be the dual coordinate [1].
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T-duality acts to change the polarisation from the one in which y is a spacetime coordinate

to the one in which ỹ is. The statement that T-duality is a symmetry implies that the

physics is independent of the choice of polarisation and that both give the same physical

results.

The conformal field theory on the torus T d−1 is completely specified by a choice of

modulus taking values in the coset space O(d − 1, d − 1)/O(d − 1) × O(d − 1) identified

under the T-duality group, and can be represented locally by a choice of metric g and B-

field on the torus T d−1, which can be combined into E = g+B. There is a natural action of

O(d−1, d−1) on the moduli space (acting on E through fractional linear transformations).

In the twisted reduction, the moduli depend on the coordinate y through the O(d−1, d−1)

transformation (8.1), giving a bundle of conformal field theories over S1 with moduli E(y).

This is also a bundle over the doubled torus in which there is no dependence on the dual

coordinate ỹ, so that the bundle over the dual circle is trivial. Now, in this doubled picture

one can simply choose the other polarisation, so that ỹ is now viewed as the spacetime

coordinate, and y is the dual coordinate. In this polarisation, there is no twisting on the

spacetime circle, but there is dependence on the dual coordinate through (8.1). This is of

course non-geometric, and cannot be understood in the spacetime alone. On relabelling

y ↔ ỹ, one obtains the T-dual picture in which y is the spacetime coordinate but there is

a twist on the dual circle through (8.4). From the point of view of conformal field theory,

it is just as natural to introduce a ỹ-twist as it is to introduce a y twist.

The general twisted construction is to introduce both a y-twist and a ỹ twist, so that

the dependence of the moduli E(y, ỹ) on y and ỹ is through an O(d−1, d−1) transformation

g(y, ỹ) = exp

(

My

2πR

)

exp

(

M̃ỹ

2πR̃

)

(8.7)

where the mass-matrices M,M̃ are required to commute and the monodromies

M(g) = exp M M̃(g) = exp M̃ (8.8)

are both in O(d− 1, d− 1, Z). If g depends just on ỹ, it is T-dual to a T–fold construction

in which the twist depends only on y, so that it is locally geometric, consisting of local

spacetime patches glued together using T-dualities, gauge transformations and diffeomor-

phisms. However, the general case in which it depends on both y and ỹ will not be T-dual

to anything that is even locally geometric, as there is dependence on both y and ỹ.

In special cases in which the twists are elliptic, there will be fixed points in moduli

space at which dependence on y, ỹ drops out, giving an orbifold with shifts in both y and

ỹ. The generalised twisting over the ỹ circle thus provides a way of moving away from the

orbifold point in moduli space.

There is also the possibility of intermediate cases, with special points in moduli space

in which the dependence on ỹ, say, drops out but the dependence on y does not, so that

the result can be thought of as a twisted reduction with twist (8.1) orbifolded by the action

of M̃ together with a shift in the ỹ direction. For example, with d = 3, O(d − 1, d − 1) is

locally SL(2)×SL(2), and if the ỹ twist is an elliptic element of one SL(2) and the y twist
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is say a parabolic twist in the other SL(2), there will be fixed points in the moduli space

at which the ỹ dependence drops out in this way, but there will be no points at which the

y-dependence drops out.

9. String field theory and doubled geometry

9.1 String field theory

A proper framework for thinking about this generalized T-duality is string field theory,

which was developed for toroidal compactification in [22]. One can expand a string field

|Ψ〉 in a basis given by the first quantized string theory defined by a conformal field theory.

If the conformal field theory has a circle factor then a state in the first-quantized Hilbert

space is labelled as |m,w, x, I〉 where m and w are the momentum and winding along the

circle as above, xµ are coordinates for the remaining dimensions and I denotes generically

all other indices labeling the state. The string field would then have an expansion |Ψ〉R =
∑

ΨR
m,w,I(x)|m,n, xI〉R where the superscript denotes that the string field is defined at

radius R of the circle (and the summation includes an integration over x). Each component

Ψm,w,I(x) in this expansion is a spacetime field. Now, clearly one expects that the string

field |Ψ〉R defined at a radius R is T-dual to the string field |Ψ〉R̃ defined at the T-dual

radius R̃ = 1/R with Buscher-like T-duality rules that will relate the fields ΨR
m,w,I(x) to

the fields ΨR̃
m̃,w̃,I(x). Note that the Buscher rules apply to only the lowest components

of this tower of states Ψ0,0,I but clearly a generalization does exist since T-duality is an

exact map that relates the Hilbert spaces of the first quantized string theories at radius R

and R̃. Given the rules of how the basis vectors |m,n, I〉R are related to |m̃, w̃, I〉R̃, which

follow from the T-duality map of the circle conformal field theory, one knows how the fields

ΨR
m,w,I are related to ΨR̃

m̃,w̃,I . These are the rules that must be used in doing the T-duality

along the circle y in the situation at hand.

Instead of using the basis of states |m,w, x, I〉, we can Fourier transform to a position-

basis of states |y, ỹ, x, I〉 depending on the periodic coordinates y, ỹ. More generally, for

configurations with a T d fibration, the position basis will depend on positions xµ in the non-

toroidal directions, coordinates yi (i = 1, . . . , d) on T d and dual coordinates ỹi, providing

a basis of states |xµ, yi, ỹi, I〉, and expanding a string field will then give an infinite series

of fields φI(x
µ, yi, ỹi) (with a field corresponding to each element in a basis of the oscillator

Fock space) depending on the dual coordinates ỹ, as well as x, y. The x, y, ỹ are coordinates

for the ‘doubled space’ used in [1], and the infinite set of fields are then fields φ(xµ, yi, ỹi) on

this doubled space. T-duality transformations can then take a conventional field depending

only on x, y to one depending on x, ỹ, or to ones depending on x, y, ỹ, and the general

solutions of the string field theory equations will give fields depending on ỹ, as well as x, y.

9.2 Doubled geometry

String field theory then leads us to consider fields on the doubled geometry with coordinates

xµ, yi, ỹi, and in [1] it was shown how to formulate string theory as a constrained sigma-

model with target space given by this doubled geometry. In this section, we discuss this
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geometry for the case of reductions with duality twists and their T-duals. Reduction on T d

followed by a reduction on S1 with a geometric twist with monodromy in the group SL(d, Z)

of large diffeomorphisms of T d can be understood as a compactification on a T d bundle

over S1 [10]. Reduction on T d followed by a reduction on S1 with a non-geometric twist

with monodromy in the T-duality group O(d, d; Z) on T d gives a T-fold (which of course

is not a manifold in general) but the doubled geometry is a bundle with fibres given by

the doubled torus T̄ 2d with coordinates y, ỹ. This is a manifold, as O(d, d; Z) ⊂ SL(2d; Z)

acts geometrically on the doubled torus. The base space is a circle with coordinate u,

say, and strings on this circle can be formulated in terms of a doubled circle T̄ 2 with

coordinates u, ũ. A generalised T-duality on the u-circle takes a T̄ 2d bundle over the u-

circle to a T̄ 2d bundle over the dual ũ-circle, corresponding to a reduction with twist over

the ũ-circle, and the general non-geometric reduction of this type will correspond to a

doubled geometry which is a bundle with doubled fibres T̄ 2d with coordinates y, ỹ and a

doubled base T̄ 2 with coordinates u, ũ, corresponding to a reduction with twists on both

the u-circle and the dual ũ-circle. This doubled construction is closely related to what has

become known as ‘generalised geometry’ (see e.g. [30]), and in fact can be thought of as a

further generalisation of this [1]. This geometry will be explored further elsewhere.

10. Discussion

We have seen that general non-geometric backgrounds have dependence both on the con-

ventional coordinates y and dual coordinates ỹ, and that fields in general depend on both y

and ỹ. The extension of T-duality to circles for which the natural U(1) action is not isomet-

ric necessarily leads to such backgrounds. In general, one would expect momentum modes

to be sensitive to the y-dependence of a background, while momentum modes would be

sensitive to the ỹ-dependence, so that different probes would ‘see’ different backgrounds.

A world-sheet approach to extending T-duality to backgrounds without isometries was

proposed in [23], and it would be interesting to compare this with our construction.

An important class of backgrounds arise from reductions with duality twists, with

monodromy M around a circle with coordinate y, and we have considered the example

in which this is a T-fold corresponding to a bundle whose fibres are CFT’s on T n, with

moduli depending on y. A T-duality T on the T n fibres takes this to a twisted reduction

with conjugate monodromy TMT−1. We propose that a generalised T-duality on the base

circle of the original background with coordinate y takes this to a twisted reduction over

the dual circle, with moduli now depending on the dual coordinate ỹ, with monodromy

M on the ỹ circle. In the example of a T 3 with constant flux, one T-duality takes this

to a T 2 bundle over S1 with parabolic twist, a further T-duality in a fibre direction takes

this to a T-fold with monodromy M ∈ O(2, 2; Z) and finally a third T-duality on the base

circle takes this to a bundle of T 2 CFT’s over the dual circle with the same monodromy

M ∈ O(2, 2; Z).

An interesting example of geometries with dependence on a dual coordinate has al-

ready appeared in the literature [24 – 27]. A Kaluza-Klein monopole solution of string the-

ory (given by the product of Euclidean Taub-NUT with 6-dimensional Minkowski space) is
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T-dual to a NS 5-brane, smeared over one of the four transverse directions, which is com-

pactified to a circle [28]. A localised version of the NS 5-brane compactified on a circle is

obtained by taking an infinite periodic array of parallel NS 5-branes along a line, and then

periodically identifying that line. This now has non-trivial dependence on the coordinate y

of that circle, but is independent of the dual coordinate ỹ. On T-dualising, one would expect

ỹ to become the coordinate x on the S1 fibre of the Kaluza-Klein monopole, and y to be-

come the dual coordinate x̃. In [24 – 26], evidence was given that the T-dual of the localised

NS 5-brane should be a version of the Kaluza-Klein monopole with non-trivial dependence

on the dual coordinate x̃, arising from the dependence of the NS 5-brane on y, so that

whereas momentum modes experience a throat-like geometry in the 5-brane, string wind-

ing modes feel a stringy throat-like structure of the Kaluza-Klein monopole. Non-trivial ỹ

dependence of the Kaluza-Klein monopole can be understood as arising from world-sheet

instantons [24], and this has been verified by linear sigma-model calculations [25, 26]. It

was also argued in [24] that this T-duality might be understood in terms of a T-duality

of higher modes of the string field.

Conventional effective supergravity theory in 10-dimensions is clearly inadequate for

the study of general non-geometric string backgrounds, although the effective supergravity

theory arising from reduction on a non-geometric background does provide useful informa-

tion. There is clearly much that needs to be done to obtain a better understanding of the

doubled geometry arising in this context, and the generalisations involving U-duality and

brane wrapping modes.
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